
1

worLd

The goal of this application is to help people practice English words and spelling in three
different levels (easy, med… etc.)

After you start the programme you will have the opportunity to choose the level which you
would like to play.

Picture1: Choosing difficulty level

Following that, depends on the chosen level, you will get 10, 20 or 30 pictures. You have to
write into the textbox what you can see on the screen (the input is not case sensitive). We
write in our tip, after this press on “Check” button to check the word.

Picture2: Start of checking

2

If your answer is right, the correct word will be shown in green, in other case will be shown in
red colour to help learning the words correctly. On the top of the screen you can see your
performance. To confirm that, just press the “OK” button.

Picture3: Result of checking

After pressing the “OK” button you will get a new picture and word to solve the task. This will
repeat until the number of characters indicated after the display / (slash) is reached. Then you
will get an evaluation and you can exit from the program.

Picture4: Results and escape

3

1. Step: Designing the screen

Picture5: Design

Screen: Screen1, Center, Top, Icon: WoldLogo.png, Title: Loading…1

1 It is shown only during loading

4

Media’s upload

a. WordLogo.png: the app logo
b. _WordWorld.jpg: the main screen image

The rest of the media have been already uploaded to a public storage, and their contact
information are included in the database.

The main screen (which is visible after loading):

VerticalArrangement: vaMain, AlignHorizontal: Center, Visible 2
Image: imgMain, Picture: _WordWorld.jpg
HorizontalArrangement: haLevel, Center, Center, Width: Fill parent
 Button: btnEasy, Width: 75px, Text: Easy, TextAlignment: Center

Button: btnMedium, Width: 75px, Text: Easy, TextAlignment: Center
Button: btnHard, Width: 75px, Text: Easy, TextAlignment: Center

The design of the game area (which is not visible at start up):

VerticalArrangement: vaGameArea, AlignHorizontal: Center, Visible 2
 Label: lblInfo, FontSize: 30, Text: „”
 Image: imgTask, 200px * 200px
 Label: lblWord, FontSize: 14, Text: „Word:”
 TextBox: txtAddText, Enabled 3, Text: „”
 HorizontalArrangement: haButtons

Button: btnQuit, BgColor: Red, FontBold , Shape: oval, Text: Quit,
TextAlignment: Center, TextColor: Yellow, Visible

Button: btnOK, BgColor: Blue, FontBold , Shape: oval, Text: OK, TextAlignment:
Center, TextColor: LightGray, Visible

Button: btnCheck, BgColor: Blue, FontBold , Shape: oval, Text: Check,
TextAlignment: Center, TextColor: LightGray, Visible

Component not visible:

TinyWebDB1: ServiceURL: https://erasmuspals-157008.appspot.com/

2 If you turn off visibility, you can only edit it later when you turn on Display hidden components in Viewer. In all
child objects we no longer have to deal with Visible because they inherit the similar property of a parent object.
3 Although this property is turned on by default, it is important to check this setting because you will meet it later.

5

2. Step: Scanning the database into the list

Picture6: Database operations

If the database loading was successful, the mainscreen (vaMain) component will be displayed.
Here object orientation is used, which means in this case that with setting the parent object
(vaMain) to visible the descendants will be visible as well. (see Design)

The structure of the database is special, because on the one hand, a record contains the name
of the image and the title of the image with a * (star) separator. On the other hand, the
correlation between the 30 records and levels can be seen in the table below:

recno record Easy Medium Hard
1 dog*http://moricz.arrabonus.hu/erasmus/dog.jpg
2 deer*http://moricz.arrabonus.hu/erasmus/deer.jpg
3 cube*http://moricz.arrabonus.hu/erasmus/cube.gif
4 axe*http://moricz.arrabonus.hu/erasmus/axe.jpg
5 tree*http://moricz.arrabonus.hu/erasmus/tree.jpg
6 monkey*http://moricz.arrabonus.hu/erasmus/monkey.jpg
7 brain*http://moricz.arrabonus.hu/erasmus/brain.jpg
8 wolf*http://moricz.arrabonus.hu/erasmus/wolf.jpg
9 camera*http://moricz.arrabonus.hu/erasmus/camera.jpg
10 mouse*http://moricz.arrabonus.hu/erasmus/mouse.png
11 cupcake*http://moricz.arrabonus.hu/erasmus/cupcake.jpg
12 ghost*http://moricz.arrabonus.hu/erasmus/ghost.jpg
13 helicopter*http://moricz.arrabonus.hu/erasmus/helicopter.png
14 mushroom*http://moricz.arrabonus.hu/erasmus/mushroom.jpg
15 owl*http://moricz.arrabonus.hu/erasmus/owl.gif
16 parrot*http://moricz.arrabonus.hu/erasmus/parrot.jpg
17 postman*http://moricz.arrabonus.hu/erasmus/postman.jpg
18 rose*http://moricz.arrabonus.hu/erasmus/rose.jpg
19 soldier*http://moricz.arrabonus.hu/erasmus/soldier.gif
20 turkey*http://moricz.arrabonus.hu/erasmus/turkey.gif
21 screwdriver*http://moricz.arrabonus.hu/erasmus/screwdriver.jpg
22 mosquito*http://moricz.arrabonus.hu/erasmus/mosquito.jpg
23 fingerprint*http://moricz.arrabonus.hu/erasmus/fingerprint.png
24 church*http://moricz.arrabonus.hu/erasmus/church.gif
25 archer*http://moricz.arrabonus.hu/erasmus/archery.png
26 firefighter*http://moricz.arrabonus.hu/erasmus/firefighter.jpg
27 butterfly*http://moricz.arrabonus.hu/erasmus/butterfly.jpg
28 calculator*http://moricz.arrabonus.hu/erasmus/calculator.jpg
29 lobster*http://moricz.arrabonus.hu/erasmus/lobster.jpg
30 photographer*http://moricz.arrabonus.hu/erasmus/photographer.png

Picture7: The database

6

This means briefly that, for example at medium level, the whole database is read into a list,
but after scanning it until the "unnecessary" 21-30th records it will be deleted from the list.
This is necessary because we can provide only like this way that the images will follow different
orders in each game, to generate a random number between 1 and list_length, and then
delete this record from the list after displaying the round. We achieve with this that always a
valid listindex will be generated.

3. Step: Setting the difficulty level

You can move on by clicking on the right difficulty level button. Firstly, the main screen
(vaMain) will be invisible, then the game area (vaGameArea) will be set to visible. Here we
also use object orientation, which means in this case that with setting the parent object
(vaMain) to invisible the descendants will be invisible as well.

Picture8: Changing Main screen and Game area

After this, for example at medium level, the unnecessary records will be deleted. With a help
of a for loop records from 21 to 30 will be deleted one by one. In every step the actual first
wrong record (21) will be deleted.

Picture9: Deleting unnecessary records

Then, the number of records will be set (the biggest drawable index).

Picture10: Setting variable maxIndex

7

Finally, we begin to draw a new word.

Picture11: Invoking the NewWord event4

It is worth thinking about the difference between the operations of the three buttons. After a
while, we realize that the only difference is in the numbers of the used records, therefore it is
recommended to write a procedure for them, which uses the element number as a parameter.
Rewriting the commands above and included into a procedure we will get the followings:

Picture12: Setting the level with buttons

The Click event manager of the three buttons should look like this:

Picture13: The buttons of the level adjustment using the Click events

4 We are going to use camelcase variables in the followings as well, meaning that the names of the procedures
designed by us are also camelcase, but start with capital letters.

8

4. Step: Generating a new task from the list

Generating a random word has an important element. It is really important that we analyze
the structure of the list and creating a list for the chosen difficulty level (by deleting). We can
only generate a new word, if we have an element in our list. Let’s suppose our player clicked
on Medium difficulty, so the list has 20 elements in it.

Picture14: The criterion of generating a new word

As the first step of the generating we keep track of the number of tasks we are currently at.

Picture15: Keeping track of the number of the task

As the second step, we generate a random number from the possible record numbers. We are
sure that we get a good random number, because we are using built-in blocks. Following this
route we are going to get random numbers from 1 to 20.The rndIndex value which was drawn
should be 11.

Picture16: Generating Valid random number

From the list we get the item that is attached to the rndIndex and the list contains a “*”
character which splits the string into 2 parts. We put the first part into the rndWord. For
example the 11th list element is „cupcake*http://moricz.arrabonus.hu/erasmus/cupcake.jpg”.
A 2 element list is going to be created according to the “*” character split.

[1]: cupcake

[2]: http://moricz.arrabonus.hu/erasmus/cupcake.jpg

http://moricz.arrabonus.hu/erasmus/cupcake.jpg

9

After that, we just have to put the first item of the list into the rndWord variable.

Picture17: Loading the list item before the selector * into rndWord variable5

The second list item is loaded into the imgTaskPicture property.

Picture18: Loading the list item after the selector * into the imgTask Picture property

Finally, delete the rndIndex item from the list. This works well like this, because without
keeping the last list item a new number can be drawn. Moreover, the game will not be tiring
because the records will be randomly drawn. So, the 11th list item is going to be deleted.

Picture19: Removing rndIndex list item

Thus, in the next round the length of list global list is going to be only 19, and the random
number generator is going to draw between 1 and 19.

Another line is included in the procedure only because of utility reasons. Since, when the
output is displayed we do not want the player to modify the text of the textBox, therefore it
is set to disable for that time. And now here it is enabled.

Picture20: Enabling to modify the content of textbox

5 Split block creates a list from a string as a text with splitting by the character (*) after at. Working like this the
first element of the list will be the word before *.

10

Altogether the block code of generating the new word:

Picture21: The whole NewWord procedure

5. Step: Checking the given word

Before we start checking some settings are needed to be done. Turn off the visibility of Check
button.

Picture22: Setting the visibility of Check button

Here, we would like to display the results that is why we do not want the player to write into
the textBox, so for the time of displaying the results it is going to set to disable.

Picture23: Setting to disable the editing of txtAddText

11

The default colour of displaying is set to red.

Picture24: Setting the text colour of IbIWord to red.

Checking is needed, if the written text and stored text is the same. Setting the written word
into not Case sensitive, we need to set the word into written with small letters, the stored
words were already saved as written with small letters. If the two of them are the same, the
number of scores will be increased and the text colour will set to green.

Picture25: The checking

The results are written:

Kép26: Displaying the results

The correct answers are written:

Picture27: Displaying the correct answers

If there is no more list element that means all the tasks had been done. So, an individual result
will be count (scores/max score *100). Then it will be rounded to a whole number to be
displayed fine on the screen. This result is going to be loaded to txtAddText and set the

12

visibility of Quit button to enable. If there are any drawable element, only the OK button will
be visible.

Picture28: If there is no more list item, or there is

Picture29: The full checking event

13

6. Step: Accepting the results and starting to quit

If there is another task to do, then the OK button will appear. For this, some settings are going
to be done in the Click event, then the NewWord procedure will be invoked. The settings are
the followings: The appropriate answers place is changed by „Word:”, after we changed its
colour into black. The visibility of the Check button is turned on, and the visibility of the OK
button is off. The input field should be deleted.

Picture30: The Click event of the OK button

The event management of the Quit button is very simple.

Picture31: The Click event of the Quit button

14

The full block list:

	1. Step: Designing the screen
	2. Step: Scanning the database into the list
	3. Step: Setting the difficulty level
	4. Step: Generating a new task from the list
	5. Step: Checking the given word
	6. Step: Accepting the results and starting to quit

