

1

Managing a puzzle element

Step 1: Visual design

Picture1: Screen design

Step 2: Creating the Screen (for testing)

Building up the Game Area:

-Screen: Screen1, Center, Center, Icon: isr.PNG, Title: Build the DSL network

-Canvas: mainCanvas, 300px height, Fill parent… wide

-1. ImageSprite: place1, 45px *45px, X:90, Y:60, picture: place1.jpg

-2. ImageSprite: picture1, 40px*40px, X:5, Y:240, picture: icon1.png

Canvas

1. ImageSprite

2. ImageSprite

TouchDown

Dragged

TouchUp

Labels

(0;0)

Level: Beginner

Time: 2x45 Mins

2

Creating the Information bar:

-Label: touchDown, Text: „”

-Label: dragged, Text: „”

-Label: touchUp, Text: „”

Explain it: What does the (x;y) coordination pair means in case of a planar shape

(element)?

Step 3: Declaring the necessary global variables

Here, we have to focus on what we can accept as “the correct place” for the

puzzle. This is going to be named as (endX;endY) variables. Furthermore, if an

element is placed into a wrong place, it has to “move back” into the starting

position which is going to be named as (beginX;beginY). These variables are going

to be used in several other procedures, therefore they must be declared as global

variables.

Picture2: Global variables

Find out: Declaring variables in this way is called camelCase. What does it mean

exactly?

3

Step 4: Programming the "touchDown" event

The screen coordinate, where it was grabbed, is loaded into TouchDown label.

These two data(x;y) are automatically there for us when the TouchDown event

is called. (This information is not important for us, but we can check the screen

resolution with the help of them). After this, we set the values of the global

variables to the values of picture1 (beginX=5, beginY=240, endX=90, endY=60).

Explain it: The currently (grabbing picture1) set values are the same as the

coordinates X and Y of picture1 in the Designer. Why is it so?

Picture3: The TouchDown event

Test it: Check what coordinates are being displayed by clicking on the element.

Try to find a coordinate that is almost outside of the Screen.

Explain it: Why doesn't we get a coordinate pair when we click on the Screen

instead of the Puzzle element?

4

Step 5: Programming the “Drag” event of the element

That coordinates are loaded into dragged label where we are currently dragging

the puzzle. These coordinates are automatically there when we call the event:

Dragged (currentX;currentY). These coordinates are only helping our orientation.

To move the element, we must call the MoveTo method. The element is going

to move to the place which is represented by the (x;y) coordinates of this

method. According to this, simply x=get(currentX) and y=get(currentY)

parameters are needed to set.

Picture4: Dragged event v1

Test it: Check what coordinates you get when you click on the element and drag

it. Watch how the element jumps under your finger when you start moving it, by

doing this you can't really see where you drag it.

Think about the problem: What causes it?

The red circle indicates the position of a click. Its coordinates are

(currentX,currentY). If you start dragging it, the MoveTo event starts positioning

the top-left corner (check Picture5), which means, you cannot really see where

the dragging goes. That is why dragging must be positioned into the middle of

the Puzzle element, so not putting the element of the top-left corner to the

current coordinate (currentX;currentY), but shifting it with half size of the

element to top-left. So, x=currentX-(picture1.Width/2) and y=currentY-

(picture1.Height/2).

5

Picture5: Repositioning

Let's have a look at the code:

Picture6: Dragged event v2

Test it: Check if you click and drag the element you can clearly see it now.

6

Step 6: Programming the "MoveTo" event

Think about it: What should we do in the "MoveTo" event?

The releasing coordinates are displayed to touchUp label.

When the user releases the puzzle element at the correct coordinates

(endX;endY) we accept that and in any other case we put the puzzle element into

its starting position (beginX;beginY)

So to the false branch of the condition a MoveTo method comes with

(beginX;beginY) parameters.

Picture7: Moving back

Since there is really a little chance that the user of the application will release

the puzzle element at the exact X and Y coordinates, you have to make the

correct position a little bit bigger. In other words, the destination coordinate

should examine a given environment. It can be achieved that the size of the

destination place must be increased. Based on our experiences the following

square should be examined.

Picture8: Acceptable size of range

50px

50px

5px 5px

(endX;endY)

(x;y)

7

The green X coordinates are the ones that we accept. So, the releasing of the

puzzle is at the correct place when you still have 5px to the left, 5px to the top,

50px to the right and 50px to the bottom.

Picture9: The acceptable coordinates of the square

To finish the method, the only thing to do is to get to know the coordinates of

the red point (release). Luckily, this data is stored in the TouchUp's event (x and

y). To see clearly this code, another event is made, which is called by the

releasing coordinates from TouchUp event management. This is how the

algorithm is going to work:

((releasing X coordinate smaller, than position X + 50px and

releasing X coordinate bigger, than position X - 5px) and

(releasing Y coordinate smaller, than position Y + 50px and

releasing Y coordinate bigger, than position Y - 5px))

Picture 10: Checking the acceptable field with the event

50px

50px

5px 5px

(endX;endY)

(x;y)

(endX-5;endY-5)

(endX-5;endY+50) (endX+50;endY+50)

(endX+50;endY-5)

8

Picture11: Calling the Near event

If this criterion is met, then we simply need to put the element into its

destination which is at the (endX;endY) coordinates:

Picture12: Positioning the element into its place

At last let's see the event management

Picture13: TouchUp event

9

Full code:

Picture14: The whole block of the app

1

The networkPuzzle app

Designer:

Picture1: The app in designer view

Level: Intermediate

Time: 4x45 Mins

2

Think about it: How our tasks change in case of more elements?

1. It is always has to be known what elements are grabbed/moved/released

-> a variable, named currentPart, is necessary, which is set to a default

value in the beginning of coding.

Picture2: Setting currentPart variable in the beginning

2. It is also has to be known, which element was put to its place successfully.

-> a variable, named placedCounter, is necessary, which is examined after an

element is dragged to its place. If the value of placedCounter is the same as

the number of the elements, then we are ready.

Picture3: Checking the status of the puzzle

3. Because more than one element is required to perform the same

activities, so because of the principle of decision postponement, the event

managements are needed to be coded as simple as they are possible. And

the common parts should be parametrized in different methods with

variables.

Picture4: TouchDown event manager for each element

(It is recommended to decide about the coordinates with the help of the Auxiliary table at

the end of this document)

…

3

Picture5: The same TouchDown method for each element (needed to be

coded only once)

Here the TouchDown event management sets the (beginX;beginY)

coordinates and element name. The (endX;endY) are not here because

they are going to be set only in TouchUp event management.

For making difference between global variables and variables as given

(and received) parameters, the last ones start with capital letters.

Picture6: Dragged event management has to be coded for each element

Picture7: The same Dragged method for each element (needed to be coded

only once)

The interesting part of Dragged method is, that it knows by item ID (Part)

which item it must deal with. MoveTo method “component” parameter

…

4

serves for this. Methods like this (can be parameterized with component)

are available from Any component/Any ImageSprite menu.

Picture8: Reaching ImageSprite based on component

5

Finally, “release” event management:

Picture9: TouchUp event management has to be coded for each element

Picture10: The same TouchUp method for each element (needed to be coded

only once)

…

6

If releasing happens at the right place, then after dragging the element to

its destination place, enabling further moving must be set. See the code

below:

Picture11: Enabling moving an element from its place

If there is a release, then at the end of the event management the value of

currentPart must be set to default.

7

Picture12: Function Near

Picture13: The prototype list of the app

8

Auxiliary table:

No. Item name Pic Size (px) beginX beginY endX endY

1 isr isr.png 40x40 76 284 70 171
2
3
4
5
6
7

