Managing a puzzle element Level: Beginner

Step 1: Visual design Time: 2x45 Mins

(0;0) .

Canvas

1. ImageSprite

2. ImageSprite

_

TouchDown/

Dragged
TouchUp

Picturel: Screen design

Step 2: Creating the Screen (for testing)

Building up the Game Area:

-Screen: Screenl, Center, Center, Icon: isr.PNG, Title: Build the DSL network
-Canvas: mainCanvas, 300px height, Fill parent... wide

-1. ImageSprite: placel, 45px *45px, X:90, Y:60, picture: placel.jpg

-2. ImageSprite: picturel, 40px*40px, X:5, Y:240, picture: iconl.png

Creating the Information bar:
-Label: touchDown, Text: ,”
-Label: dragged, Text: ,”
-Label: touchUp, Text: ,”
What does the (x;y) coordination pair means in case of a planar shape
(element)?

Step 3: Declaring the necessary global variables

Here, we have to focus on what we can accept as “the correct place” for the
puzzle. This is going to be named as (endX;endY) variables. Furthermore, if an
element is placed into a wrong place, it has to “move back” into the starting
position which is going to be named as (beginX;beginY). These variables are going
to be used in several other procedures, therefore they must be declared as global
variables.

initialize global (=" D to | [J)
initialize global (=" 1) to |)
initialize global (=" to | [
initialize global (=717 to ([

Picture2: Global variables

Declaring variables in this way is called camelCase. What does it mean
exactly?

TouchDown

0 0
do

Step 4: Programming the "touchDown" event

The screen coordinate, where it was grabbed, is loaded into TouchDown label.
These two data(x;y) are automatically there for us when the TouchDown event
is called. (This information is not important for us, but we can check the screen
resolution with the help of them). After this, we set the values of the global
variables to the values of picturel (beginX=5, beginY=240, endX=90, endY=60).

The currently (grabbing picturel) set values are the same as the
coordinates X and Y of picturel in the Designer. Why is it so?

when .TouchDown

Xy
gdon set [EITITTED - AETED to | (] join [get ENE)
unn

*=1 global beginX - LM 5
T global beginy ~ I 240
"1 global endX_+ L 90]
{EC1 global endY - JRIT60]
—

Picture3: The TouchDown event

Check what coordinates are being displayed by clicking on the element.
Try to find a coordinate that is almost outside of the Screen.

Why doesn't we get a coordinate pair when we click on the Screen
instead of the Puzzle element?

Step 5: Programming the “Drag” event of the element

That coordinates are loaded into dragged label where we are currently dragging
the puzzle. These coordinates are automatically there when we call the event:
Dragged (currentX;currentY). These coordinates are only helping our orientation.
To move the element, we must call the MoveTo method. The element is going
to move to the place which is represented by the (x;y) coordinates of this
method. According to this, simply x=get(currentX) and y=get(currentY)
parameters are needed to set.

when [I=TEYIEN Dragged

call [(ENEED MoveTo
x ! get CUED
y | get

Picture4: Dragged event v1
Check what coordinates you get when you click on the element and drag
it. Watch how the element jumps under your finger when you start moving it, by
doing this you can't really see where you drag it.

What causes it?

The red circle indicates the position of a click. Its coordinates are
(currentX,currentY). If you start dragging it, the MoveTo event starts positioning
the top-left corner (check Picture5), which means, you cannot really see where
the dragging goes. That is why dragging must be positioned into the middle of
the Puzzle element, so not putting the element of the top-left corner to the
current coordinate (currentX;currentY), but shifting it with half size of the
element to top-left. So, x=currentX-(picturel.Width/2) and y=currentY-
(picturel.Height/2).

Picture5: Repositioning

Let's have a look at the code:

when (XN Dragged

Picture6: Dragged event v2

Check if you click and drag the element you can clearly see it now.

/i when TouchUp

Step 6: Programming the "MoveTo" event
What should we do in the "MoveTo" event?
The releasing coordinates are displayed to touchUp label.

When the user releases the puzzle element at the correct coordinates
(endX;endY) we accept that and in any other case we put the puzzle element into
its starting position (beginX;beginY)

So to the false branch of the condition a MoveTo method comes with
(beginX;beginY) parameters.

call SN MoveTo
P ——————
X EI =¥ global beginX +

-1 global beginY -

Picture7: Moving back

Since there is really a little chance that the user of the application will release
the puzzle element at the exact X and Y coordinates, you have to make the
correct position a little bit bigger. In other words, the destination coordinate
should examine a given environment. It can be achieved that the size of the
destination place must be increased. Based on our experiences the following
square should be examined.

5PX£5F’X 50px
(endX;endY)
50px
o
(x;y)

Picture8: Acceptable size of range

The green X coordinates are the ones that we accept. So, the releasing of the
puzzle is at the correct place when you still have 5px to the left, 5px to the top,
50px to the right and 50px to the bottom.

(endX-5;endY-5) (endX+50;endY-5)
5pX£5PX 50px
(endX;endY)
50px
o
(x;y)
(endX-5;endY+50) (endX+50;endY+50)

Picture9: The acceptable coordinates of the square

To finish the method, the only thing to do is to get to know the coordinates of
the red point (release). Luckily, this data is stored in the TouchUp's event (x and
y). To see clearly this code, another event is made, which is called by the
releasing coordinates from TouchUp event management. This is how the
algorithm is going to work:

((releasing X coordinate smaller, than position X + 50px and
releasing X coordinate bigger, than position X - 5px) and
(releasing Y coordinate smaller, than position Y + 50px and
releasing Y coordinate bigger, than position Y - 5px))

o ED O 0

Picture 10: Checking the acceptable field with the event

Picturell: Calling the Near event

If this criterion is met, then we simply need to put the element into its
destination which is at the (endX;endY) coordinates:

=1 global endY -

Picturel2: Positioning the element into its place

At last let's see the event management

g0 set [EMIIVED - =EA to ((o) join I get EXE
‘8"

Picture13: TouchUp event

Full code:

when [ENEIED Dragged when [STEEI TouchUp
— x|y

do sat

initialize: global | Jio |) B when [FTXIEN TouchDown

iniialze gob uo
do

set

Chie | 0
initialize global | ito | @)
initialize global | ite | @)

(=N picture] * WTI0]

X

ET giobal begin LN 5|
EY lobalbegn ~ [0
L120 global endX + JCH 90 |
:ei global endY + NGEM 60

L curent® JRRNR icure -+ I Wit - JAN2|

[| - ¥ 5 . 1 global endX
 corentt YR W - AR *! (LR
] ke end

else call [IETEIED MoveTo
x | o (TS
VI gobelbegi

JoiE 0 0

result | m
CR [+ 0 /o e - aly I IO bl endy KA 50

= e

Picture14: The whole block of the app

The networkPuzzle app

Level: Intermediate

Time: 4x45 Mins

Designer:

Viewer

Display hidden components in Viewer

Build the DSL network

Components Properties

(=] Screen] Canvasl

8 L scCanvasl BackgroundColor

[J None

* default
Backgroundimage
* modem 2 g
ortrait. PNG
*pc

* cloud

* winner

*isr

* laptop

S%wrong_snd

P e e —

Nrigh

PaintColor
. Black

TextAlignment

N applause_snd

center:1 +
Visible
v

Rename Delete

Media

Non-visible components

d
wrong_snd

applause.mp3

2 cloud.PNG

~
right_snd applause_snd
empty_portrait PNG

isr.PNG
laptop PNG
modem.PNG
pc.PNG
right. mp3
router.PNG
server. PNG
winner.PNG
wrong.mp3

Upload File

Picturel: The app in designer view

How our tasks change in case of more elements?

1. Itis always has to be known what elements are grabbed/moved/released
-> a variable, named currentPart, is necessary, which is set to a default

value in the beginning of coding.

when EEEEED Initialize
0BT global currentPart - B5

Picture2: Setting currentPart variable in the beginning

2. It is also has to be known, which element was put to its place successfully.
-> a variable, named placedCounter, is necessary, which is examined after an
element is dragged to its place. If the value of placedCounter is the same as
the number of the elements, then we are ready.

-1 global placedCounter - | = - J{(7

call Play

Picture3: Checking the status of the puzzle

3. Because more than one element is required to perform the same
activities, so because of the principle of decision postponement, the event
managements are needed to be coded as simple as they are possible. And
the common parts should be parametrized in different methods with

variables.

when -TouchDown

BeginY

Picture4: TouchDown event manager for each element

(It is recommended to decide about the coordinates with the help of the Auxiliary table at
the end of this document)

M BT global currentPart + RGBS Y Part - |

1 global beginX - L MM <] BeginX - |
%=1 global beginy + LML] BeginY - |

Picture5: The same TouchDown method for each element (needed to be
coded only once)

Here the TouchDown event management sets the (beginX;beginY)
coordinates and element name. The (endX;endY) are not here because
they are going to be set only in TouchUp event management.

For making difference between global variables and variables as given
(and received) parameters, the last ones start with capital letters.

% Wragged
Part e0 8

X
Y | get EEINES

Picture6: Dragged event management has to be coded for each element

G BN lobal currentPart - = - (=1 Part
then call ImageSprite.MoveTo
for component | get [GELED

x
get BB - ImageSprite. (1T _f

of component | get [GZELIED

of component b Part « |

Picture7: The same Dragged method for each element (needed to be coded
only once)

The interesting part of Dragged method is, that it knows by item ID (Part)
which item it must deal with. MoveTo method “component” parameter

serves for this. Methods like this (can be parameterized with component)
are available from Any component/Any ImageSprite menu.

Blocks Viewer
I Variables
M Frocedures call ImageSprite. Bounce
7 screen for component

8 |Zacanvas]
/™ default
."I‘ modem
: -
; -

peC

router

SETVET

cloud

winner

e
,Hlaptc-p

4 'wrong_snd

4 'right_snd

d !applause_snd

=2 Any component

=A Any Canvas
4 - Any ImageSprite
& Any Sound

Rename @ Delete

Media

applause.mp3
cloud PNG
empty_portrait. PNG
isr.PNG

laptop PNG
modem.PHG
pc.PNG
right.mp3
router. PNG
server.PNG
winner PNG

wrong.mp3

Upload File ...

edge

call ImageSprite. CollidingWith
for component

other

call ImageSprite. MovelntoBounds

for component

call ImageSprite. MoveTo
for component

X

Y

call ImageSprite. PointInDirection
for component

X
y

call ImageSprite. Point Towards
for component

target

ImageSprite.

of component

set ImageSprite. [EELEREN

of component

to

LEREE LG Heading - |
of component

Picture8: Reaching ImageSprite based on component

Finally, “release” event management:

EndY

Picture9: TouchUp event management has to be coded for each element

|:rZ:- 103 TouchUp) |) | |

- O 24 global currentPart_— Jff = - T Part -
then | o call
Part ol Part « |
EndX | get [ZCNS0
EndY | get [ZC10ED
call ImageSprite. MoveTo

for component | get [GELIED

x | oot ED

y | get SN

set ImageSprite.
of component { get [ZELES
to
=1 global placedCounter - LGS o s e
= W right_snd + BgEY
Lo ! global placedCounter « 31 = * Bf{ 7
set - fo m

= N applause snd * [5V
L —

—

else call ImageSprite. MoveTo
for component | get [ZEED
X =0 global begink « |
| global beginY |
_wrong_snd * |8
_C_E” ong Play

-1 global currentPart + RCEIE default «

Picture10: The same TouchUp method for each element (needed to be coded
only once)

If releasing happens at the right place, then after dragging the element to
its destination place, enabling further moving must be set. See the code
below:

set ImageSprite.

Picturell: Enabling moving an element from its place

If there is a release, then at the end of the event management the value of
currentPart must be set to default.

o) to

i
resuit

of component || get (ZTIE of component | get (IS of component | get [CETEE

of component | gel (TS

Picturel2: Function Near

initialize global to
initialize global to when isr TouchDown x when isr Dragged startX
initialize global to when

cloud .TouchDown x .. when cloud Dragged star... when cloud TouchUp x .

when Screeni _Initialize d...

when laptop -TouchDown x...

when laptop Dragged sta... when laptop .TouchUp x ..

when modem TouchDown x .. when modem Dragged star.. when modem TouchUp x ..

when pc TouchDown x y...

when pc Dragged startX .. when pe TouchUp x y .

when router TouchDown x...

when router Dragged sia... when router . TouchUp x ...

when server TouchDown x... when server Dragged sta... when server TouchUp x ...

Picturel3: The prototype list of the app

Auxiliary table:

No.

Item name

Pic

Size (px)

beginX

beginY

endX

endY

isr

isr.png

40x40

76

284

70

171

Nou|hWN|F-

