ArtinMotion

Content

1.
2.

3.

ArtiInMotion user view
Designing and blocking the screens
2.1. Screenl
2.2. Screen?2
2.3. Screen3

B S Y of o < <Y o 1 S

All blocks

1. ArtinMotion user view

ArtinMotion is an App developed to improve our knowledge about art and architecture. It has
two different options that you can choose in first screen (picture 2), after splash screen
(picture 1), shown by the details of two pictures by “El Greco”, Doménikos Theotokdpoulos.

/N
MEA

|
;

B

o !
g Wﬁ and choose
e b
"

o o

<

Picture 1: Screen 1 - Splash screen Picture 2: Screen 2

Choosing Art and Learn, you reach a list view of 36 different terms related to art (picture 3).
Clicking each one of them you get an explanation about the term, references and a picture
that has been taken by the Spanish team in the p@Is project (picture 4).

|.'§e-‘zr“h list

alfiz ARCHIVOLTS

An archivoltis a molding running around the face of an arch
There is usually a series of them together which makes the
i arch look bigger and really expressive.
amphltheater The architectural term is applied especially to Medieval and
Renaissance buildings where the archivolts are often
d with Ipt but there are archivolts in other
apse periods of art too

aqueduct

arcade

archivolts * Cathedral of Sevilla Spain

atlantes

baptistery

<

Picture 3: Screen 3 - ListView Picture 4: Screen 3 — Term view

On the other hand, if the user chooses Art and play, positioning the phone horizontally, you
get into a quiz game, where, in each round (from six), six pictures are shown and you are asked
to drag and drop the right term onto the correspondent picture. Then, with all the labels

collocated, clicking in Check button it takes you to next round, checking how many terms you
have placed in the correct picture and adding your points to the scoreboard (picture 5).

Picture 5: Screen 4 — Checking view

After thirty pictures, you are in the final round (picture 6):

Picture 6: Screen 4 — Final round view

And after that, the quiz is ended and the user gets the final score with a different motto
depending on the score (picture 7).

Finish!

You have finished with this score: 34
Wow!, You may end up being Michelangelo after

allt

Start again

Picture 7: Screen 4 — Finish view

2.Designing and blocking the screens

2.1. Screen 1

A. Designer

This screen is the splash screen, which is shown for one second before entering in the first
screen where user can interact. It only has a clock as a countdown, meanwhile a jpg picture
related with project (a Mudejar skirting board from the Alcazar of Seville which has been
touched up) is shown as a presentation.

Properties of this screen are:

Properties
Screenl

AboutScreen

Vz

AccentColor
|:| Orange

AlignHorizontal
Left: 1+

AlignVertical
Top:1~

AppName

ArtinMotion

BackgroundColor
|:| Default

Backgroundimage

pt_splash.jpg...

Picture 8: Screen 1 — Properties

CloseScreenAnimation
Default «

Icon

icon.jpg...

OpenScreenAnimation
Default

PrimaryColor
[] white

PrimaryColorDark
l Default

ScreenOrientation
Sensor v

Scrollable
ShowListsAsJson

ShowStatusBar

Sizing
Responsive v

Theme
Classic ~

Title

Screen1

TitleVisible

TutorialURL

VersionCode
1

VersionName

1.0

As it can be seen, because this is the main screen, App name (ArtInMotion), icon (icon.jpg),
screen orientation (sensor), sizing (responsive) and theme (classic) are defined here. In that
way, medias which are uploaded are:

Icon.jpg as an icon square picture

pt_splash.jpg as background of splash screen in portrait position

Is_splash.jpg as background of splash screen in landscape position

Viewer Components

Display hidden components in Viewer e Screenl
Check to see Preview on Tablet size.

7 clockt

Rename Delete

Non-visible components

Clock1
Picture 9: Screen 1 — Design

B. Blocks

As it is shown in the next picture, we just enable Clockl timer when screen 1 is initialized, and
also, if screen orientation is changed while splash screen is showing, background picture is
changed (from pt_splash.jpg to Is_splash.jpg and vice versa) to adequate aspect ratio to the
screen.

when [HEESED .Timer
- B W Clock1 ~ ¥ TimerEnabled ~
i open another screen screenName

g Screen2 fy

when Initialize
[] :ai Clock1 ~ M TimerEnabled ~ M true - |

when .ScreenOrientationChanged

e "Screent - | Width - JI < - || Screent ~ |1 Height - ||
. X Screent - Wackgroundimage - JURINEY 's_spiash jog |

g pt_splash.jpg g

Picture 10: Screen 1 — Blocks

Finally, when the timer ends, screen 2 is opened.

2.2. Screen 2

A. Designer
In this screen options are displayed. The user can choose between two options, one of them
takes the app to screen 3 where a list of terms, descriptions and pictures are displayed and the
other to screen 4, which goes directly to the quiz. Also it has a handler if back button on the
phone is pressed, that takes the user to a directly exit option.

Properties for this screen are:

Properties CloseScreenAnimation
Default ~
Screen2
OpenScreenAnimation
AboutScreen Default ~
y ScreenOrientation
) . Sensor ~
AlignHorizontal
Center: 3~ Scrollable
AlignVertical
ShowStatusBar
Center: 2 ~
BackgroundColor Title
D Default Screen2
Backgroundimage o
TitleVisible
None...
Picture 11: Screen 2 — Properties 1 Picture 12: Screen 2 — Properties 2

As it can be seen, we use here 4 components: labell to display the explicatory sentence
“Choose an option”, one button with learn.jpg background and other with choose.jpg
background and another button for direct exit.

Viewer Components

Display hidden components in Viewer
Check to see Preview on Tablet size.

Screen2
Labell
-~ Button1
Button3

Button2

Rename Delete

Picture 13: Screen 2 — Design

Properties for each button are:

Properties Properties Properties
Button2 Button3 Button1
BackgroundColor BackgroundColor BackgroundColor
[l Default W Default B Default
Enabled Enabled Enabled
FontBold FontBold FontBold

G

Fontlitalic Fontltalic Fontltalic
FontSize FontSize FontSize

35 14.0 350
FontTypeface FontTypeface FontTypeface
default = default = default =
Height Height Height

45 percent... 0 pixels... 45 percent.
Width Width Width

Fill parent... Fill parent... Fill parent...
Image Image Image
choose.jpg... None... learn.jpg
Shape Shape Shape
rounded = default rounded ~
ShowFeedback ShowFeedback ShowFeedback
Text Text Text

Press to exit!

TextAlignment TextAlignment TextAlignment
center: 1~ center: 1« center: 1~
TextColor TextColor TextColor

B Default B Default 0 white
Visible Visible Visible

Picture 14: Screen 2 Button 2 Picture 15: Screen 2 Button 3 Picture 16: Screen 2 Button 1

B. Blocks

This screen has a very simple logic, just two buttons to choose an option:

e Button 1 click event handler: Clicking Button1 Screen3 is opened and list of terms
is displayed.

e Button 2 click event handler: Clicking button2 Screen4 is opened, the quiz is
displayed.

e Phone Back Button pressed event handler: if the user press back button on the
smart phone and it was the first time that it was pressed, we make buttoni,
button2 and labell disappear and we show button3, which if it now it is clicked,
app is closed (with a Button 3 click event handler).

when ([ETEIEED -Click
do openanoﬂu'suaan RN ET R Screend

whenCllck

when [EECEIPED .BackPressed
|8 Button3 - W Heignt - | # - §{0]]

set‘-to 45
il Button2 ~ B HeightPercent ~ JRERIE 45

 set [(ETTIED. to

eise set-l}EI':'JﬂDtD 0]
set 3 Height ~ R O |

when e
do _ close application

Picture 17: Screen 2 Blocks

2.3. Screen 3

A. Designer
Now we are going to explain the two most complex screens. Firstly we would like to clarify that
all data that is used, term, descriptions, pictures and legends are imported from a .csv file, that
is to say, that they can be changed easily, in order to change terms, descriptions and pictures
or simply increase elements and rounds. In this option, Art and Learn, a listview is shown with
36 terms, descriptions, pictures and legends imported from glossary.csv file.

Anyway media has to be uploaded, and in this case we need glossary.csv and all pictures,
whose names are included in the .csv file.

Viewer

Display hidden components in Viewer
Check to see Preview on Tablet size.

Components

Screen3

VerticalArrangement1

Labell

Search list

Label2

Label4
il Imagel
Label3
—
= terminos

Filel

o e

Non-visible components

Filel

Picture 18: Screen 3 Design, components and properties

As it is shown, a vertical arrangement has been added, to display all components one above

the next one.

The list view called terminos is displayed at the beginning, but the rest of components are
hidden. When a term is selected, we hide the list view and show the other components to
display labels of texts (term name, description and legend) and a picture which contains the
correspondent image uploaded. If back button is pressed all elements are hidden but list view

terminos is unhidden and shown again.

Properties
Screen3

AboutScreen

AlignHorizontal
Center:3

AlignVertical
Top:l~

BackgroundColor
D Default

Backgroundimage
None
CloseScreenAnimation

Default ~

OpenScreenAnimation
Default

ScreenOrientation

Unspecified =

Scrollable
ShowStatusBar

Title

Screen3

TitleVisible

Properties of each components have been configured as shown in following pictures:

Properties
VerticalArrangement1

AlignHorizontal
Center: 3+~

AlignVertical
Top:1~

BackgroundColor
. Default

Height

Fill parent.

Width

Fill parent...

Image

None...

Visible

Picture 19: Screen 3- Vertical
arrangement properties

Properties

terminos

BackgroundColor
. Default

ElementsFromString

Height

Fill parent...

Width
Fill parent..

Selection

SelectionColor
D Default

ShowFilterBar
TextColor
[] pefault

TextSize

22

Visible

Picture 20: Screen 3-
ListView properties

Properties
Labell
BackgroundColor

[None

FontBold
Fontltalic

FontSize
8

FontTypeface
default -

HTMLFormat

HasMargins
Height
Automatie.
Width
Fill parent

Text
Text for Labell

TextAlignment
center : 1+

TextColor
B pefault

Visible

Picture 21: Screen 3-
Labell properties

Properties

Label4

BackgroundColor
[Mone

FontBold
Fontltalic

FontSize
14.0

FontTypeface
default »

HTMLFormat
HasMargins
7

Height

20 pirels...

Width
Fill parent.

Text

TextAlignment
left: 0~

TextColor
B Default

Visible

Picture 24: Screen 3-
Label4 properties

Properties
Label2

BackgroundColor
[0 mene

FontBald
Fontltalic

FontSize
140

FontTypeface
default =
HTMLFormat
HasMargins
Height
Automatic.
Width

Fill parent
Text

Text for Label2

TextAlignment
left: 0~

TextColor
B Default

Visible

Picture 22: Screen 3-
Label2 properties

Properties

Properties
Label3
BackgroundColor

[0 Nene

FontBold
Fontitalic

FontSize
120

FontTypeface
default ~

HTMLFormat
HasMargins

Height
Automatic.
Width
Fill parent

Text
Text Label 3

TextAlignment
center: 1=

TextColor
B Default

Visible

Picture 23: Screen 3-
Label3 properties

Imagel

Height

Fill parent...

Width
Fill parent...

Picture

None...

RotationAngle
0.0

ScalePictureToFit
Visible

Picture 25: Screen 3-
Imagel properties

Label 1 is used for term tittle, label 2 for all the texts in the description, label 3 is used for the
legends just under the picture and label 4 is a resource to have a blank space between text and

picture.

B. Blocks

In this case, blocks are also simple, but with the difference of getting data from the .csv file, as

it is shown here:

initialize global [

T 10 descripeiones_auxiliar £

initialize global 0S_al to | () create empty list

(%) create empty list

" [5) create empty list

inifialize global to | (0] create empty list

initialize global (7115 to

(%] create empty list

when [F[EJ -GoiText

’ | listfrom csv table text get CTE
foreach [-,] in [i "\ global glosa
do ([c] additems folist st |~ get FETI =R
it spli select listitem fist (o3 text | get (EhED

a | “"0O"

(] add items to list list
item

(=] additems to list list
item

length length | select list item list

! global terminos_auxiliar - |

when Initialize
do call [ReadFrom

fileName
-

Picture 26: Screen 3- reading and storing info from .csv file

When screen 3 is initialized, reading from glossary.csv file is done (previously uploaded). As we
have completed .csv file in order to have a row per term, we charge whole file in a global list
variable called global glosario, where we will have a row from the file in each element in the
list. Then, we have to read element by element from the initial list global glosario to fill each
element of a different list just to separate term names from descriptions and legends in three
lists.

As we get information from file formatted like this:

(term1;descriptionl;legendl)
(term2;description2;legend2)
(term3;description3;legend3)

We have to split each row from file to take out parenthesis and semicolons and we use
auxiliary list elements as global terminos_auxiliar, global descripciones_auxiliar and global
legend_auxiliar for storing terms, descriptions and legends separately.

At the end we assign to elements of list terminos all the term names stored in
terminos_auxiliar to show the list view.

Next thing to do is handling even after picking one element from terminos list:

when [EILIIEERS -AfterPicking
.. T Screen3 - | Scrollable - Rl
-3 terminos ~ I Visible ~ 8.
- Label1 ~ | Visible - |
C8 Label2 - i Visible ~
LW Label3 - | Visible ~ |
.Y Labeld ~ | Visible ~ |

set (E1ED - T3 © i rmincs ~ P Seiecion -

. W Label2 ~ | Text ~ '} " LR ETE N SN T global descripeiones_auxiliar «

index ;
set [NEFCIRES - to | (2] join | replace all text . .
segment | “[J "
replacement | "

-8 Label3 ~ |4 Text ~ R° || select list item list .- { global legend_auxiliar ~
", 4 terminos ~ & Selectionindex ~
| oot (RS - R rue - |

Picture 27: Screen 3- Showing term info after picking one from list

As we use the same screen that before, we have to hide the list component and unhide the
others (all the labels and the picture). We also make screen 3 scrollable to make possible scroll
down to read the whole text, be able to see the picture and legend.

At the end, we assign to each label the correspondent text from each auxiliary list, changing

term text to uppercase and conforming the name of the picture adding .jpg at the end of term
name.

Finally, we handle pressing back button in the phone, to take user to the list view again, just
making visible terminos list and hiding all labels and picture. If back button is pressed when
user already is in list view of this screen, app takes user to the previous screen (screen 2).

P Screens3 « W Scrolable «)

Ll Label2 ~ | Visible ~ LN
Ll Label3 -] Visible - NEN

P imaget ~ W Visiio ~ K faise -

P terminos - J Selection ~ JCJBL0)

else | opan anofher screen screenName * EEEE) ”

Picture 28: Screen 3- Back button event handler

2.4. Screen 4

A. Designer
This is definitely the most complex screen of the App. As it is shown in the next picture, a
canvas is used to manage interactions between images sprites, occupying 90 percent of
screen. The rest 10 percent is used, with a horizontal arrangement, to display the Check
button, Reset button and the scoreboard.
We also have included 4 non visible elements: the same .csv file as in screen 3, 2 notifications

to show messages during the game, and a clock which makes a countdown while answers are
being checked.

Screen design and components can be seen here:

Viewer

Display hidden components in Viewer =]
Check to see Preview on Tablet size.

Score:

Check!

Non-visible components

File2 Notifier1 Notifier2 Clockl

Picture 29: Screen 4- Design, components and screen properties.

Six images sprites are used with term pictures as background. Other six images sprites are used
with term labels as background, so events are detected when an image sprite is dragged and
dropped onto other image sprite, colliding between them. An auxiliary image sprite, called
placeholder, is included and used to avoid dragging two labels at the same time. Properties of

Screena NENtS

Screend

A Canvasl
*ImageSprite2
*ImageSprited
*ImageSprite5
*ImageSprite6
*ImageSprite4
*ImageSprite8
*ImageSprited
*ImageSprite10
*ImageSprite11
*ImageSprite12
*“ImageSpritel
*ImageSprite7
* placeHolder
HorizontalArrangement1
= check

score

Rename Delete

the three kinds of images sprites are shown in the following pictures:

Properties

Properties

ImageSprite2 ImageSprite8
Enabled Enabled
Heading Heading

0 a

Height Height

100 pixels... 100 pixels...
Width Width

100 pixels... 100 pixels...
Interval Interval

100 100
Picture Picture
None. None...
Rotates Rotates
Speed Speed

0.0 0.0

Visible Visible
X X

125 1000
s A7

0 1000
7 i

1.0 2.0

Picture 31: Screen 4- Label
imageSprite properties.

Picture 30: Screen 4- Picture
imageSprite properties.

Properties
Screend

AboutScreen

AlignHorizontal
Center:3 ~

AlignVertical
Top:1~

BackgroundColor
D Default

Backgroundimage
None...
CloseScreenAnimation
Default ~

OpenScreenAnimation
Default ~

ScreenOrientation

Unspecified ~

Scrollable
ShowStatusBar
Title

Screend

TitleVisible

Properties
placeHolder
Enabled

Heading
0

Height

Automatic..

Width

Automatic..

Interval
100

Picture

None...

Rotates

a

Speed
0.0

Visible

Picture 32: Screen 4- Auxiliary
imageSprite properties.

In the same way, for labels and buttons, properties are:

Properties Properties Properties Properties
reset points score check
BackgroundColor BackgroundColor
[Light Gray BackgroundColor BackgroundColor [orange
D None D None
Enabled Enabled
FontBold FontBold
FontBold FontBold
Fontltalic Fontltalic
Fontitalic Fontitalic
FontSize Fomdiee Foniice FontSize
160 14.0 16.0 »
FontTypeface FontTypeface FontTypeface FontTypeface
default » default ~ default ~ default ~
Height HTMLFormat HTMLFormat Height
Fill parent... Fill parent...
Width HasMargins HasMargins Width
25 percent... 25 percent.
i Height
Image Height 9 Image
Naore... Fill parent. Fill parent... None.
Shape Width Width Shape
rounded = 26 percent... 25 percent... rounded ~
ShowFeedback ShowFeedback
] Text Text a
Text Score: Text
Reset!) Check!
TextAlignment TextAlignment
TextAlignment center: 1~ right: 2 = TextAlignment
center: 1~ center: 1~
TextColor TextColor
TextColor TextColor
Default
0 white W Defauit i B Default
Visible Visible Visitle Visible
m
Picture 33: Screen 4- Picture 34: Screen 4- Picture 35: Screen 4- Score Picture 36: Screen 4-
Reset button properties. points label properties. board label properties. Check button properties.

These labels are used to count points and accumulate them when labels are placed onto the
right picture. We have also included two buttons, one of them to let user check correct
answers and pass to the next round (Check button). The other button is a reset, which can be
clicked any moment during the game to reset the quiz to the round 1. There are six rounds. At
the beginning of each one, a message telling that you are in that round is displayed. Also, at
the end of the game (after round 6), a message is displayed with all the score reached and a
motto related to art and correspondent to the score. In this moment, the message also gives
user the option of starting the quiz again or exit the app.

B. Blocks

As we told before, this is the most complex screen in our app.
At the beginning we start defining many variables that will help us to manage all the
information and logic:

initialize global (S Fd to | ()

initialize global (ZT1)to | D

initialize global (G- to |

(] create empty list

initialize global ([C[-[) to | (<] create empty list

initialize global Jto | (%] create empty list

initialize global (ST d to | ()

Picture 37: Screen 4-
Variables defined

initialize global (0o to

initialize global C-) to | [

(] create empty list

In general, all variables like Srpi_NN_ori_X and Srpi_NN_ori_Y are defined and used to store
initial positions of label image sprites, in order to be able to take them to that position when
reset button is pressed and when next round is started. Also, list called positions, is created to
store all positions (coordinates x and y) of pictures and labels, depending on device screen size,
in order to shuffle the picture positions, to avoid the game be so easy repeating always same

solutions.

Lists called terminos, glosario and terminos_auxiliar are used to store terms and pictures from

.csv file.

A variable called anch_pant is created to store device screen width. The app centres all the
pictures in the device screen and gives a width and a height to each picture depending on this

value, which is stored in anch_pant.

Variable called round stores the current round between values 1 and 6.

Now, we are going to explain initialization block, shown in picture 38:

when JInitialize
do call 53 ReadFrom
fileName

¥ giobal Xgiobal - |
giobs Xglobal [Canvas1 - 1 Wiath - |

1 global anch_pant ~ |-

L.

Picture 38: Screen 4- Screen initialization

First thing that is done is to read .csv file from phone storing, as we did in screen 3. We use
here the same file glossary.csv, and everything is done the same that before, storing all
information in some lists in order to have the 36 terms and pictures in a list called global
glosario. Then, as before, we split each row to eliminate parenthesis and semicolons, and the
“clean” information to store it in a definitive list called terminos_auxiliar. To avoid always
playing the same game, because we always use the same .csv file, a shuffle function called
ShuffleList is used. In that way, we shuffle every row coming from the file and every execution
of our app is different.

Finally, ini_mages_and_labels is called to initiate each round (here the first one), we will
explain it later.

when ([GZE3 GotText
text.
do | set FIEIreourkd to | listfrom csvtable text | = get ITiEd
8T tem |1 WM"Y global giosario - |
U@ kel T global terminos. auxiliar « |
flem replace all text I Selectiistitem list ([CIIED text O selectlistitem list [text | get [TiED

segment | "
replacement | "B "

W ShuffleList -

positions get [
-8 ini_images_and_labels ~
.-

Picture 39: Screen 4- getting data from .csv file

After reading data, we check if the device is in horizontal position (we just check if the screen
width is bigger than the screen height or not), the only position in which the game can be
played. If the device is in horizontal position, using screen width the app calculates the
optimum width for all pictures and labels in order to occupy most of the screen. Just after that,
X position of the first sprite is defined and stored in Xglobal variable.

Now procedure resize_imgs (picture 40) is called to set width, height and position in the screen
of every picture image sprite, later the same is done with labels calling procedure resize_labels
(picture 42).

el
WX~ B0 | global Xglobal ~
. to
B Width ~ LM ImageSprite1 « |4 Width « |

Ny - O

X IR imagesSprite1 - |4 Widih - MEBER™ 1 global Xglobal - |
W Wicth - 3| ImagesSprite1 - | Width - |

B o | [
EE) o :::

M mageSpriie] ~ .' = '@al |* |- global Xglobal -

W Wicth ~ 3| ImageSprite? - | Width - |

- KL | global Xglobal -

N~ R* M ImageSorite1 ~ M Height ~ |

W Width - K3 ImageSprite ~ |4 Width - |

B RON imagesprite1 - I widtn - JRRENTT gloval Xgiobal -
NY - X)L ImageSprite1 ~ | Height - |

W Wicth - 3| ImagesSprite? - | Width - |

) o 1 (@)
(X~] RN acesprited ~ 1 Width - LR 2 IRl .. global Xglobal -
WY - K0 imageSprite1 - |1 Height -

Picture 40: Screen 4- Resizing pictures for image sprites.

In this procedure, from variable Xglobal as initial X position, all positions for every picture
image sprite is set, building a grid of 3x2 (picture 41).

GARGOYLE AQUEDUCT
ALF I{ ARCADE NICHE

Check! Score: 0

Picture 41: Screen 4- pictures grid

Then, the same is done with labels, using X and Y position from the first picture image sprite.
Because the labels are smaller, we reduce width and height from pictures and centre all the
label group in screen (picture 42).

1] resize_labels
LY imageSprite7 -l Width - RERERE " imageSprite1 ~ | Width - |

BRI B Canvast - | widin > = IS global anch,_pan -

then set FTTEECI R to | (2]
G . -1 global Xglobal ~
Sanvast - B _ g2 SN imagesprie7 - I widtn - JIERET s JRRASL2

| —

U global Xlabels ~ EVNENE) +
= _ : -1 global Xglobal ~
(-4 global anch_pant ~ VAN 2 | = ImageSprite7 + | Width ~ |t (] 3| [2 |

—

£y ImageSprite7 ~ M Height ~ JN-SENE) a' '@ |0 imageSprite? -~ 1) Width ~

£ ¥ ImageSprite? ~ |8 X ~ WM"Y global Xlabels ~
LN ImageSprite? - WY - REREREIN | 2ceSpritet - 1| Height - |t 2
~~" global Spri_7_ori_X - 11| ImageSprite? ~ |1 X -
-1 global Spri_7_ori_Y - |-} || ImageSprite7 -

p B Width - WERE ImageSprite? - [} Width - |
2 ImageSprite8 ~ B REREREIN |12 0cSprite7 - 1) Widih ~ [edl. | global Xlabels ~

By - RGN ageSpritet ~ |1 Height - |t 2
L) ImageSprite8 — i Height ~ NI ImageSprite7 ~ I Height - |
. global S ori_X ~ §17] ImageSprite8 ~ [X ~ |
-1 global Spri_8_ori_Y ~ 85I ImageSprite8 ~ B Y ~ |
3 ImageSprited ~ |8 L 3) <

se prited ~ I X - [N BN Tmagesprite? - | width - IEHE 2 Il -] global Xiabels

Ll ImageSprited ~ LY ~ REREREIR Imagespritet - |11 Height - Jled(] 2 |

set B Widih - [0 ImageSpite? - 1| Widih -

=Y Imagesprieo ~ N Heignt ~ L8| ImageSprite? - || Haight -

-1 global Spri_9_ori_X ~ 85I ImageSprited ~ B X ~ |

-1 global S)_ori_Y ~ oM ImageSprited ~ B Y ~ |

set ([Sprite10 ~ M Width ~ IRl ImageSprite? ~ || Width ~

L~ ImageSprite10 ~ i Height ~ =W ImageSprite7 ~ | Height ~

set ([prite10 « B X ~ [WMEN - { global Xlabels ~
UG - 68 © (2] o) e e - :

set [prite10 o L) BN imagesprite] - |1 Height - |l 2| L ImageSprite7 ~ | Height ~

" global Spri_10_ori_X ~ k)4 ImageSprite10 « 1 X - |

-4 global Spri_10_ori_Y ~ 77} ImageSprite10 ~

Y imagespriei1 - i Widh - JURL | Imagesprita? - | Widih -

set ([[prite11 ~ J Height ~ I ImageSprite7 ~ | Height ~

L8 ImageSprite 11 ~ B X ~ REREREIN | mageSprite? - | Width - [Iadl -1 global Xlabels ~

sot (I EEIED - 0D o | (5 ; -

prite Y ~] O gcSorict - W Height ~ R) 2|\ L ImageSprite? - I Heignt -

14 global Spri_11_ori_X ~ I% ImageSprite11 ~ [X ~ |

-~ global Spri_11_ori_Y ~ {3 ImageSprite11 ~ B Y ~ |

set [prite12 ~ 0 Width ~ el | ImageSprite? - | Width -

L=l ImageSprite12 « M Height ~ IIE ImageSprite? ~ | Height ~

pdll macesertenz = BLX S R N eI oo o Wiath < I 2 L | giobal Xiatels -

=Y TmageSprite12 - WV - K MMGON e : q
prite (Y -] 2R ImageSprite - | Height - | l-00] 2] L ImageSprite7 ~ 5| Height ~

"1 global Spri_12_ori_ X - k)8! ImageSprite12 - 1 X - |

|| global Spri_12_orl Y - | ite12 ~ M Y ~ |

Picture 42: Screen 4- setting positions and sizes for labels.

Now it is time to shuffle positions in order to move pictures for every time that a round is
started. It is done with procedure called ShuffleList, using a random position each time (picture
43).

Y ShufteLst J po

do | foreach () from ()
to | lengthoflist list = get

by &
do | (2] initialize local [[7T-1) 2 get il +

random integer from | [} to I length of list _list "1 positions - i getm.

-L1 positions - |

Picture 43: Screen 4- Shuffling positions for labels.

Inside ShuffleList procedure, Swap procedure is called, to make a replacement between
elements in list using an auxiliary list (picture 44).

ER -l Swap M '
do [(3] initialize local (T T Jto | selectlistitem list = get [NTITED
index = get [ad
in | replace list item list
index
replacement

replace list item list
index
replacement get

Picture 44: Screen 4- Swap procedure

After shuffling positions and getting all new positions in global_positions variable, all picture
positions are re-assigned (picture 45) using procedure move_imgs.

28 -] move_im
select list item list list from csv row text | select listitem list
index |
index &R
" select list item list select listitem list
index
index 3
) select list item list list from csv row text = select listitem list
index
index &
" select listitem list | listfrom csvrow text | select listitem list
index
index 3
select list item list list from csv row text | select listitem list
index
index &R
" select list item list select listitem list
index
index 3
) select list item list list from csv row text = select listitem list
index
index &
" select listitem list | listfrom csvrow text | select listitem list
index
index 3
select list item list list from csv row text | select listitem list
index
index &R
" select list item list select listitem list
index
index 3
select list item list list from csv row text = select listitem list
index
index D
" select listitem list | listfrom csvrow text | select listitem list
index

index 3

L -

Picture 45: Screen 4- Re-assigning picture positions

Then, just to make label dragger able, Z index of each label picture is increased to 2 (picture
46).

@) reZ_sprites
I Y imageSprite7 ~ J Enabled -)
Y ImageSprite7 - W Z - W01 2
Y ImageSprite - A Enabled - ™
Y ImageSprites ~ W Z ~ K00 2
¥ imageSprited ~ M Enabled ~ ')
¥ imageSprited - W Z - L0 2

¥ ImageSprite 10 -~ W Enabled -
Y imagesprite 10 - I Z - NN 2
¥ imageSprite 11 ~ |4 Enabled - ™)
¥ mageSprite 11 ~ W Z - K R0L2
Y ImageSprite12 - W Enabled -)
N mageSpritet2 - I Z - TR 2

Picture 46: Screen 4- Changing Z index of every label

Now points are set to 0 and score and point label, check button and reset button are set to
visible.

If the device was not set in horizontally position, everything is hidden but Labell, to show the
message of: To play this game, hold the mobile horizontally, and the app waits to change
position and to get the sensor event. When the position is changed, things are set in the same
way as initialization (picture 47).

when [EECEIZED -ScreenOrientationChanged

do [(3] if 1
© [Screend - | Height - WA Screend - 1 Widtn - JL= I8 1.6
o dlmazesoniel SRLVC BN iooal anc_pant - JA(5.2]

L.

SISSN oot (TEDIGED - MIEEED to (1 (ios Frrenra) | B

L

.- ¥ global Xglobal ~ §'s -
global Xg - global ancn_pant ~ M 1.85 B magespriet - I Width - |

=) resizo_imgs
call (EENLTTED
N ShuieList - |

positions. | get IR
=N move_imgs -
call CEENEETED

L reZ_sprites - |

set R -
C2N Lavel1 - J Visivle - W faise -
L2 check - [N Visible ~ Ol true - |
P reset - | Visivle - U true -
PN coints ~ i Visiole - I true - |
W score - W Visible - L true - |
P) Canvasi ~ 4 Visible ~ K3, true - |
P ¥ oints ~ Y Text ~ JC-JRL0 |
call [[EIE7ES -ShowMessageDialog
s I L L BB Drag these 6 art terms and drop them on the righ... i
" global round -
title W ArtinMotion |
buttonText -

Picture 47: Screen 4- Handler of screen orientation change and initialization

Finally, a message is shown to explain game rules.

Now we are going to explain ini_images_and_labels procedure:

call [\EHEFES -ShowMessageDialog

message o Dra e B art tern them on the righ... §§

]

-1 global terminos_auxiliar =
1]

o seiectiistitem list | get FE I
index 3

LLRE TSN ST global terminos_auxiliar - |
index)

e giobal terminos_auxilar = |
index 3
D"
] "] global terminos_auxiliar -

sk

P2y global terminos._auxiiar ~ |
)

2] global termings _auxilar -
2

- |l global terminos_auxiliar ~

| if get global round = 2 the...

| i get giobal round = 3 the...

if get global round = 4 the...

| if get giobal round = 5 the...

| if get global round = 6 the...
(B0 M Gobaroun < = < T
T Notifier] = B o]
message

Y giobat oun - 1 = - WL 10 Il BT glocal round - (20
"2 global round ~) 2 - J820 Il 209 = SRR iobal round - i < ~ [30]

title

butfon1Text
button2Text
cancelable

S

Picture 48: Screen 4- For each round, picture and labels are changed

Depending on round variable value, new sets of 6 pictures and 6 labels are charged from
terminos_auxiliar where all rows from .csv file are stored.

It is simple, every round, 6 pictures and labels are taken from the list, until last round, where
depending on score, a message is displayed in different ranges.

It is time to tackle the core of the quiz, which it is not other than dragging and dropping
events. As we explained before, to avoid dragging two image sprites at the same time, we use
an auxiliary sprite called placeholder. As it is shown in picture 49, we have defined a touching
up event, a dragging event and a touching down event for each label image sprite:

x|y
O qiobal currentisP - 13
=W 1 sortes |

x|y
do set to

Picture 49: Screen 4- For each label, touching up, dragging and touching down events are defined.

In that way, when a label image sprite is touched down, we assign the currentISP to our label
image sprite, in order to move just one label. If not, every time that the user touches another
label image sprite dragging one; every sprite is added to the movement. While the image
sprite is dragged, we change positions X and Y updating them to current position. When the
user touches up the screen, we give back the currentiSP to the auxiliary image sprite
placeHolder. We also set Z index of image sprites that has been dragged to 10, to ensure that it
is above all elements on screen.

When the user has placed all the labels or every label that knows, it is the moment to check
correct and the user has to press check button. When it is done, Check_corrects procedure is
called (picture 50).

call [Tl - Coliding¥With

other

R CollidingWith

olher

[IER ColidingWith
other | EREETIIENES

=5

AR CollidingWith

ather

SR CollidingWWith
VR |mageSorited

then | ImageSprite12 - M Picture « J#
ite12 + M Pict o *IE

Picture 50: Screen 4- For each label, checking if it collides with the right picture

As we have defined, the answer is correct if label image sprite 7 is over picture image sprite 1,
80on2,90n3,100n4,110on5 and 12 on 6. As we change backgrounds of every image sprite
in every execution of app and in every round, this checking method can be fixed.

So, every time that check_corrects procedure is called, we check if these pairs of images
sprites are colliding and if they are, we consider that the answer is correct and we show the
Correct! label and we add one point to the scoreboard. While we are doing that, and to avoid
users press again any button or image sprite, we enable clockl as a countdown of 1 second.
After this second the app takes user to the next round, placing all labels to the origin position
and calling again ini_images_and_labels procedure, showing the next round message and
changing all images and labels to the six next ones.

"l Clock1 * IS
T Clock! + M TimerEnabled + JUVEE false « |
sel (ETSTIAD €53 to || oot (ETETRATEED
Y + WU -4 global Spri_7 ori Y - |

Enahled

(X - WONEN -4 global Spri_8 ori_X
(Y « BB -1 global Spri_8 on Y * |
 Enabled +

O I 2l global Spri_6_or X -]

[Enabled + R
(X + W
Y * B
Enevied * K, e |
OC IO L global Spri 12 on X -]
€D © | get FESISTIRFETRAD
prite12_+ I Enabled + O true -
FEY lobal round * 1

Gl 0. images_and labels -

Picture 51: Screen 4- After checking everything is taken to origin and app
passes to the next round

Finally, we are going to explain reset procedure. This procedure is called when the user presses
reset button, which can be pressed any time during the game. When it happens, the round is
set to 1 (to the beginning) and every label image sprite is set to the original position in the grid.
At the end, ini_images_and_labels procedure is called to start the game again (picture 52).

"7 global Spri 8 on X * |
P global Spr 9 on Y -

=1 giobal Spri_10_on X]
¥ giobal Spn_10_on Y]
X true -

=1 global Spr12_on X -]
™= giobal Spn_12_on Y -

Picture 52: Screen 4- If reset button is pressed anytime during the game

3. All blocks

Screenl

when ~Timer

to

when _ScreenOrientationChanged
O WS I Widh [Screent - M rieht - |
then set . to | * *
-

else set
-
L

Screen2

when Click

do | openanother screen screenName

when Click

do | open another screen screenName

when _BackPressed
B B utons - W Height -)< - 0]
then : . o
: to

to

(]

when -Click
do , Close application

Screen3
when _GotText

do | set GIEE Ul to | listfrom csv table text | get (S0
| for each 5+ W global glosario - |
do | (<] additems tolist list | get FTRERCIOTEIC i ikl
item | selectlistitem list ([EZM text [selectlistitem list [E00EM text |
E S (N

index

| add items to list fist W =4 global descripciones_auxiliar |
item | selectlistitem list [ETEN text
at
index B
BT =3 = W™ global legend_auiliar + |
item segment text (1 selectlistitem list ([EYTED text [get EE0ES

index
start | D

length length | selectlistitem list

index |

when Initialize:
do call [ReadFrom
fletame. | * (RIEERTED "

(-

when _BackPressed

= an terminos + [Visible ~ J}{ = - I false -
then .

when [ENLLERS AfterPicking
do set
set
| set
set
set
| set -
set : R uocase -] !
| sat) TS - L global descripciones auxiiar - |
index -
join | replace all text .
segment | *
replacement

e N = M= Giobal legend _auxiiar ©
L2 W terminos - I Selectionindex ~_

iali to

initialize global (2] create emply list

initialize global to @) create empty list

Screen 4

	1. ArtInMotion user view
	2. Designing and blocking the screens
	2.1. UScreen 1
	2.2. UScreen 2
	2.3. UScreen 3
	2.4. UScreen 4

	3. All blocks

