

ArtInMotion

Content
1. ArtInMotion user view .. 3

2. Designing and blocking the screens .. 5

2.1. Screen 1 .. 5

2.2. Screen 2 .. 7

2.3. Screen 3 .. 9

2.4. Screen 4 .. 13

3. All blocks .. 28

1. ArtInMotion user view

ArtInMotion is an App developed to improve our knowledge about art and architecture. It has
two different options that you can choose in first screen (picture 2), after splash screen
(picture 1), shown by the details of two pictures by “El Greco”, Doménikos Theotokópoulos.

Choosing Art and Learn, you reach a list view of 36 different terms related to art (picture 3).
Clicking each one of them you get an explanation about the term, references and a picture
that has been taken by the Spanish team in the p@ls project (picture 4).

On the other hand, if the user chooses Art and play, positioning the phone horizontally, you
get into a quiz game, where, in each round (from six), six pictures are shown and you are asked
to drag and drop the right term onto the correspondent picture. Then, with all the labels

Picture 1: Screen 1 - Splash screen Picture 2: Screen 2

Picture 3: Screen 3 - ListView Picture 4: Screen 3 – Term view

collocated, clicking in Check button it takes you to next round, checking how many terms you
have placed in the correct picture and adding your points to the scoreboard (picture 5).

After thirty pictures, you are in the final round (picture 6):

And after that, the quiz is ended and the user gets the final score with a different motto
depending on the score (picture 7).

Picture 5: Screen 4 – Checking view

Picture 6: Screen 4 – Final round view

Picture 7: Screen 4 – Finish view

2. Designing and blocking the screens

2.1.

Screen 1

A. Designer

This screen is the splash screen, which is shown for one second before entering in the first
screen where user can interact. It only has a clock as a countdown, meanwhile a jpg picture
related with project (a Mudejar skirting board from the Alcázar of Seville which has been
touched up) is shown as a presentation.

Properties of this screen are:

As it can be seen, because this is the main screen, App name (ArtInMotion), icon (icon.jpg),
screen orientation (sensor), sizing (responsive) and theme (classic) are defined here. In that
way, medias which are uploaded are:
Icon.jpg as an icon square picture

pt_splash.jpg as background of splash screen in portrait position
ls_splash.jpg as background of splash screen in landscape position

Picture 8: Screen 1 – Properties

B. Blocks

As it is shown in the next picture, we just enable Clock1 timer when screen 1 is initialized, and
also, if screen orientation is changed while splash screen is showing, background picture is
changed (from pt_splash.jpg to ls_splash.jpg and vice versa) to adequate aspect ratio to the
screen.

Finally, when the timer ends, screen 2 is opened.

Picture 9: Screen 1 – Design

Picture 10: Screen 1 – Blocks

2.2.

Screen 2

A. Designer
In this screen options are displayed. The user can choose between two options, one of them
takes the app to screen 3 where a list of terms, descriptions and pictures are displayed and the
other to screen 4, which goes directly to the quiz. Also it has a handler if back button on the
phone is pressed, that takes the user to a directly exit option.

Properties for this screen are:

As it can be seen, we use here 4 components: label1 to display the explicatory sentence
“Choose an option”, one button with learn.jpg background and other with choose.jpg
background and another button for direct exit.

Picture 11: Screen 2 – Properties 1 Picture 12: Screen 2 – Properties 2

Properties for each button are:

Picture 13: Screen 2 – Design

Picture 14: Screen 2 Button 2 Picture 15: Screen 2 Button 3 Picture 16: Screen 2 Button 1

B. Blocks

This screen has a very simple logic, just two buttons to choose an option:

• Button 1 click event handler: Clicking Button1 Screen3 is opened and list of terms
is displayed.

• Button 2 click event handler: Clicking button2 Screen4 is opened, the quiz is
displayed.

• Phone Back Button pressed event handler: if the user press back button on the
smart phone and it was the first time that it was pressed, we make button1,
button2 and label1 disappear and we show button3, which if it now it is clicked,
app is closed (with a Button 3 click event handler).

2.3.

Screen 3

A. Designer
Now we are going to explain the two most complex screens. Firstly we would like to clarify that
all data that is used, term, descriptions, pictures and legends are imported from a .csv file, that
is to say, that they can be changed easily, in order to change terms, descriptions and pictures
or simply increase elements and rounds. In this option, Art and Learn, a listview is shown with
36 terms, descriptions, pictures and legends imported from glossary.csv file.

Anyway media has to be uploaded, and in this case we need glossary.csv and all pictures,
whose names are included in the .csv file.

Picture 17: Screen 2 Blocks

As it is shown, a vertical arrangement has been added, to display all components one above
the next one.

The list view called terminos is displayed at the beginning, but the rest of components are
hidden. When a term is selected, we hide the list view and show the other components to
display labels of texts (term name, description and legend) and a picture which contains the
correspondent image uploaded. If back button is pressed all elements are hidden but list view
terminos is unhidden and shown again.

Properties of each components have been configured as shown in following pictures:

Picture 18: Screen 3 Design, components and properties

Picture 19: Screen 3- Vertical
arrangement properties

Label 1 is used for term tittle, label 2 for all the texts in the description, label 3 is used for the
legends just under the picture and label 4 is a resource to have a blank space between text and
picture.

B. Blocks
In this case, blocks are also simple, but with the difference of getting data from the .csv file, as
it is shown here:

Picture 20: Screen 3-
ListView properties

Picture 21: Screen 3-
Label1 properties

Picture 22: Screen 3-
Label2 properties

Picture 23: Screen 3-
Label3 properties

Picture 24: Screen 3-
Label4 properties

Picture 25: Screen 3-
Image1 properties

....

When screen 3 is initialized, reading from glossary.csv file is done (previously uploaded). As we
have completed .csv file in order to have a row per term, we charge whole file in a global list
variable called global glosario, where we will have a row from the file in each element in the
list. Then, we have to read element by element from the initial list global glosario to fill each
element of a different list just to separate term names from descriptions and legends in three
lists.

As we get information from file formatted like this:

(term1;description1;legend1)
(term2;description2;legend2)
(term3;description3;legend3)

We have to split each row from file to take out parenthesis and semicolons and we use
auxiliary list elements as global terminos_auxiliar, global descripciones_auxiliar and global
legend_auxiliar for storing terms, descriptions and legends separately.
At the end we assign to elements of list terminos all the term names stored in
terminos_auxiliar to show the list view.

Next thing to do is handling even after picking one element from terminos list:

Picture 26: Screen 3- reading and storing info from .csv file

As we use the same screen that before, we have to hide the list component and unhide the
others (all the labels and the picture). We also make screen 3 scrollable to make possible scroll
down to read the whole text, be able to see the picture and legend.

At the end, we assign to each label the correspondent text from each auxiliary list, changing
term text to uppercase and conforming the name of the picture adding .jpg at the end of term
name.

Finally, we handle pressing back button in the phone, to take user to the list view again, just
making visible terminos list and hiding all labels and picture. If back button is pressed when
user already is in list view of this screen, app takes user to the previous screen (screen 2).

2.4.

Screen 4

A. Designer
This is definitely the most complex screen of the App. As it is shown in the next picture, a
canvas is used to manage interactions between images sprites, occupying 90 percent of
screen. The rest 10 percent is used, with a horizontal arrangement, to display the Check
button, Reset button and the scoreboard.
We also have included 4 non visible elements: the same .csv file as in screen 3, 2 notifications
to show messages during the game, and a clock which makes a countdown while answers are
being checked.

Picture 27: Screen 3- Showing term info after picking one from list

Picture 28: Screen 3- Back button event handler

Screen design and components can be seen here:

Six images sprites are used with term pictures as background. Other six images sprites are used
with term labels as background, so events are detected when an image sprite is dragged and
dropped onto other image sprite, colliding between them. An auxiliary image sprite, called
placeholder, is included and used to avoid dragging two labels at the same time. Properties of
the three kinds of images sprites are shown in the following pictures:

Picture 29: Screen 4- Design, components and screen properties.

Picture 30: Screen 4- Picture
imageSprite properties.

Picture 31: Screen 4- Label
imageSprite properties.

Picture 32: Screen 4- Auxiliary
imageSprite properties.

In the same way, for labels and buttons, properties are:

These labels are used to count points and accumulate them when labels are placed onto the
right picture. We have also included two buttons, one of them to let user check correct
answers and pass to the next round (Check button). The other button is a reset, which can be
clicked any moment during the game to reset the quiz to the round 1. There are six rounds. At
the beginning of each one, a message telling that you are in that round is displayed. Also, at
the end of the game (after round 6), a message is displayed with all the score reached and a
motto related to art and correspondent to the score. In this moment, the message also gives
user the option of starting the quiz again or exit the app.

B. Blocks

As we told before, this is the most complex screen in our app.
At the beginning we start defining many variables that will help us to manage all the
information and logic:

Picture 33: Screen 4-
Reset button properties.

Picture 34: Screen 4-
points label properties.

Picture 35: Screen 4- Score
board label properties.

Picture 36: Screen 4-
Check button properties.

In general, all variables like Srpi_NN_ori_X and Srpi_NN_ori_Y are defined and used to store
initial positions of label image sprites, in order to be able to take them to that position when
reset button is pressed and when next round is started. Also, list called positions, is created to
store all positions (coordinates x and y) of pictures and labels, depending on device screen size,
in order to shuffle the picture positions, to avoid the game be so easy repeating always same
solutions.

Lists called terminos, glosario and terminos_auxiliar are used to store terms and pictures from
.csv file.

A variable called anch_pant is created to store device screen width. The app centres all the
pictures in the device screen and gives a width and a height to each picture depending on this
value, which is stored in anch_pant.

Variable called round stores the current round between values 1 and 6.

Now, we are going to explain initialization block, shown in picture 38:

Picture 37: Screen 4-
Variables defined

First thing that is done is to read .csv file from phone storing, as we did in screen 3. We use
here the same file glossary.csv, and everything is done the same that before, storing all
information in some lists in order to have the 36 terms and pictures in a list called global
glosario. Then, as before, we split each row to eliminate parenthesis and semicolons, and the
“clean” information to store it in a definitive list called terminos_auxiliar. To avoid always
playing the same game, because we always use the same .csv file, a shuffle function called
ShuffleList is used. In that way, we shuffle every row coming from the file and every execution
of our app is different.

Finally, ini_mages_and_labels is called to initiate each round (here the first one), we will
explain it later.

Picture 38: Screen 4- Screen initialization

After reading data, we check if the device is in horizontal position (we just check if the screen
width is bigger than the screen height or not), the only position in which the game can be
played. If the device is in horizontal position, using screen width the app calculates the
optimum width for all pictures and labels in order to occupy most of the screen. Just after that,
X position of the first sprite is defined and stored in Xglobal variable.
Now procedure resize_imgs (picture 40) is called to set width, height and position in the screen
of every picture image sprite, later the same is done with labels calling procedure resize_labels
(picture 42).

Picture 39: Screen 4- getting data from .csv file

Picture 40: Screen 4- Resizing pictures for image sprites.

In this procedure, from variable Xglobal as initial X position, all positions for every picture
image sprite is set, building a grid of 3x2 (picture 41).

Then, the same is done with labels, using X and Y position from the first picture image sprite.
Because the labels are smaller, we reduce width and height from pictures and centre all the
label group in screen (picture 42).

Picture 41: Screen 4- pictures grid

Now it is time to shuffle positions in order to move pictures for every time that a round is
started. It is done with procedure called ShuffleList, using a random position each time (picture
43).

Picture 42: Screen 4- setting positions and sizes for labels.

Picture 43: Screen 4- Shuffling positions for labels.

Inside ShuffleList procedure, Swap procedure is called, to make a replacement between
elements in list using an auxiliary list (picture 44).

After shuffling positions and getting all new positions in global_positions variable, all picture
positions are re-assigned (picture 45) using procedure move_imgs.

Picture 44: Screen 4- Swap procedure

Picture 45: Screen 4- Re-assigning picture positions

Then, just to make label dragger able, Z index of each label picture is increased to 2 (picture
46).

Now points are set to 0 and score and point label, check button and reset button are set to
visible.

If the device was not set in horizontally position, everything is hidden but Label1, to show the
message of: To play this game, hold the mobile horizontally, and the app waits to change
position and to get the sensor event. When the position is changed, things are set in the same
way as initialization (picture 47).

Finally, a message is shown to explain game rules.

Picture 46: Screen 4- Changing Z index of every label

Picture 47: Screen 4- Handler of screen orientation change and initialization

Now we are going to explain ini_images_and_labels procedure:

Depending on round variable value, new sets of 6 pictures and 6 labels are charged from
terminos_auxiliar where all rows from .csv file are stored.

Picture 48: Screen 4- For each round, picture and labels are changed

It is simple, every round, 6 pictures and labels are taken from the list, until last round, where
depending on score, a message is displayed in different ranges.

It is time to tackle the core of the quiz, which it is not other than dragging and dropping
events. As we explained before, to avoid dragging two image sprites at the same time, we use
an auxiliary sprite called placeholder. As it is shown in picture 49, we have defined a touching
up event, a dragging event and a touching down event for each label image sprite:

In that way, when a label image sprite is touched down, we assign the currentISP to our label
image sprite, in order to move just one label. If not, every time that the user touches another
label image sprite dragging one; every sprite is added to the movement. While the image
sprite is dragged, we change positions X and Y updating them to current position. When the
user touches up the screen, we give back the currentISP to the auxiliary image sprite
placeHolder. We also set Z index of image sprites that has been dragged to 10, to ensure that it
is above all elements on screen.

When the user has placed all the labels or every label that knows, it is the moment to check
correct and the user has to press check button. When it is done, Check_corrects procedure is
called (picture 50).

Picture 49: Screen 4- For each label, touching up, dragging and touching down events are defined.

Picture 50: Screen 4- For each label, checking if it collides with the right picture

As we have defined, the answer is correct if label image sprite 7 is over picture image sprite 1,
8 on 2, 9 on 3, 10 on 4, 11 on 5 and 12 on 6. As we change backgrounds of every image sprite
in every execution of app and in every round, this checking method can be fixed.

So, every time that check_corrects procedure is called, we check if these pairs of images
sprites are colliding and if they are, we consider that the answer is correct and we show the
Correct! label and we add one point to the scoreboard. While we are doing that, and to avoid
users press again any button or image sprite, we enable clock1 as a countdown of 1 second.
After this second the app takes user to the next round, placing all labels to the origin position
and calling again ini_images_and_labels procedure, showing the next round message and
changing all images and labels to the six next ones.

Finally, we are going to explain reset procedure. This procedure is called when the user presses
reset button, which can be pressed any time during the game. When it happens, the round is
set to 1 (to the beginning) and every label image sprite is set to the original position in the grid.
At the end, ini_images_and_labels procedure is called to start the game again (picture 52).

Picture 51: Screen 4- After checking everything is taken to origin and app
passes to the next round

Picture 52: Screen 4- If reset button is pressed anytime during the game

3. All blocks

Screen1

Screen2

Screen3

Screen 4

	1. ArtInMotion user view
	2. Designing and blocking the screens
	2.1. UScreen 1
	2.2. UScreen 2
	2.3. UScreen 3
	2.4. UScreen 4

	3. All blocks

